Adaptive Tracking Control of a PMSM-Toggle System with a Clamping Effect
Yi-Lung Hsu,
Ming-Shyan Huang,
Rong-Fong Fung
Issue:
Volume 4, Issue 1, February 2016
Pages:
1-10
Received:
30 December 2015
Accepted:
8 January 2016
Published:
21 January 2016
Abstract: This paper discusses an adaptive control (AC) designed to track an energy-saving point-to-point (ESPTP) trajectory for a mechatronic system, which is a toggle mechanism driven by a permanent magnet synchronous motor (PMSM) with a clamping unit. To generate the PTP trajectory, we employed an adaptive real-coded genetic algorithm (ARGA) to search for the energy-saving trajectory for a PMSM-toggle system with a clamping effect. In this study, a high-degree polynomial was used, and the initial and final conditions were taken as the constraints for the trajectory. In the ARGA, the parameters of the polynomials were determined by satisfying the desired fitness function of the input energy. The proposed AC was established by the Lyapunov stability theory in the presence of a mechatronic system with uncertainties and the impact force not being exactly known. The trajectory was tracked by the AC in experimental results so as to be compared with results produced by trapezoidal and high-degree polynomials during motion.
Abstract: This paper discusses an adaptive control (AC) designed to track an energy-saving point-to-point (ESPTP) trajectory for a mechatronic system, which is a toggle mechanism driven by a permanent magnet synchronous motor (PMSM) with a clamping unit. To generate the PTP trajectory, we employed an adaptive real-coded genetic algorithm (ARGA) to search for...
Show More
Analysis and Design of a Scramjet Engine Inlet Operating from Mach 5 to Mach 10
Luu Hong Quan,
Nguyen Phu Hung,
Le Doan Quang,
Vu Ngoc Long
Issue:
Volume 4, Issue 1, February 2016
Pages:
11-23
Received:
14 January 2016
Accepted:
25 January 2016
Published:
16 February 2016
Abstract: This paper gives a preliminary report of the analysis and design process of a scramjet engine inlet operating over a Mach number range from 5 to 10 without the use of variable geometry (moving parts) in order to find an optimal 2D geometry. An introduction of scramjet engine as well as its first component, the inlet, is given in the beginning and a number of basic inlet configurations are proposed. Inlet efficiency parameters and various design criteria are then explained, followed by a theoretical flow analysis utilizing some simplifying assumptions and the oblique shockwave relations. Next, 2D CFD simulations are carried out for some inlet geometries that are constructed based on the results of the theoretical analysis using the K-Omega SST turbulence model in Fluent to take into consideration boundary layer phenomena that the theoretical analysis is not able to cover. Lastly, a conclusion summarizing the design process is drawn and the optimal model is recommended.
Abstract: This paper gives a preliminary report of the analysis and design process of a scramjet engine inlet operating over a Mach number range from 5 to 10 without the use of variable geometry (moving parts) in order to find an optimal 2D geometry. An introduction of scramjet engine as well as its first component, the inlet, is given in the beginning and a...
Show More