Parametric Study of Drivetrain Dynamics of a Wind Turbine Using the Multibody Dynamics
Wei Shi,
Dezhi Ning,
Zhe Ma,
Nianxin Ren,
Hyunchul Park
Issue:
Volume 7, Issue 3, June 2019
Pages:
66-77
Received:
20 June 2019
Accepted:
22 July 2019
Published:
5 August 2019
Abstract: Wind energy has become one of the most cost-effective and environmental friendly renewable energy resources among all exploited renewable energy. However, the failure of gearbox contributes most of the downtime for wind turbine system. Dynamic properties of drivetrain, including gearbox should be investigated in detail further. In present paper, a mathematical model for a horizontal axis wind turbine drivetrain was developed using the torsional multibody dynamic model. The drivetrain in this study consisted of a low-speed planetary gear stage (three identical planets with spur teeth, sun and fixed ring gears) and two high-speed spur gear stages. This typical arrangement has been commonly used in the wind turbine industry. Based on this model, this paper aims to investigate the influence of drivetrain parameters on the dynamic response of the wind turbine. The dynamic responses of the turbine with different rotor inertia and generator inertia are compared. Then the difference due to changing of the shaft stiffness is also investigated during and after the transient condition. This parametric study shows that lower rotor inertia and generator inertia could lead to more oscillations.
Abstract: Wind energy has become one of the most cost-effective and environmental friendly renewable energy resources among all exploited renewable energy. However, the failure of gearbox contributes most of the downtime for wind turbine system. Dynamic properties of drivetrain, including gearbox should be investigated in detail further. In present paper, a ...
Show More
A Friction Control Strategy for Shock Isolation
Mohd Ikmal Ismail,
Neil Ferguson
Issue:
Volume 7, Issue 3, June 2019
Pages:
78-90
Received:
25 May 2019
Accepted:
10 July 2019
Published:
10 August 2019
Abstract: A control strategy is presented incorporating friction which can be adapted within a cycle of vibration. During base shock input, the friction is switched on and off based on specified response parameters. The predicted response of a semi active system is compared with that of a passive isolation system. The strategy is shown to produce an improved displacement reduction and a smaller maximum displacement compared to the base input; a result which cannot be obtained with a typical passive system. The models are then validated using an experimental rig, representing a two degree of freedom system, having an electromagnet to switch on and off friction via the control logic. Good agreement is obtained in addition to identifying optimum parameter choices.
Abstract: A control strategy is presented incorporating friction which can be adapted within a cycle of vibration. During base shock input, the friction is switched on and off based on specified response parameters. The predicted response of a semi active system is compared with that of a passive isolation system. The strategy is shown to produce an improved...
Show More